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Abstract

Noether’s theorem links symmetries in physical systems to their respective conservation laws. In
this paper, I explore Noether’s theorem as it applies the the Lagrangian density for a free electromag-
netic field, and use the variational approach - a standard textbook approach to derive the canonical
energy-momentum tensor. However, the need for symmetry of the energy-momentum tensor requires
additional steps like the Belinfante symmetrization procedure, which introduces spin angular mo-
mentum tensors. Yet, Bessel-Hagen’s approach of taking advantage of gauge invariance addresses
limitations, such as rotational contributions, of the canonical approach and derives a symmetric
energy-momentum tensor.

1. Introduction

We begin with the premise of this derivation, Noether’s theorem: asserting that for continuous symmetries
of the action, there exists an associated conservation law [2]. Importantly, the action of a system is
defined as the integral over its Lagrangian. In a standard application of Noether’s theorem, we consider
the Lagrangian density for the free electromagnetic field:

L = − 1

4µ0
FµνFµν . (1)

The version from L.D. Landau and E.M. Lifshitz takes the form of

L = − 1

16π
FµνF

µν , (2)

but for the purpose of this report, I will stick to EQ 1, where Fµν is the field tensor, defined as:

Fµν = ∂µAν − ∂νAµ. (3)

So as to not clutter the paper, I refer you to the appendix for properties and notations of tensors; for
example, ∂µ represents the differentiation with respect to the covariant spacetime variable x. Also, the
four potential Aµ is a function of the spacetime variable xµ, but for simplicity, I will often just use x in
its place, however, the upper index µ will appear when it is relevant for the derivation.

Continuing, this derivation is particularly important because in it’s canonical form, the energy-
momentum tensor is not symmetric. However, the energy-momentum tensor must be symmetric to
ensure consistency across different reference frames. For example, consider an inertial reference frame,
despite moving ahead, we will see the symmetry of the form:

Tµo = T oµ, (4)

which implies that in different reference frames, the energy and momentum are equivalent. And this
makes physical sense because the flow of energy implies momentum, and any violation of this would
make a physically unreasonable situation [3]. I also argue that from gauge invariance, as will be shown,
the tensor is manifestly symmetric.

In order to achieve symmetrization, the tensor Tµν is often subjected to a procedure proposed by
Belifante. Indeed, it is strange that the fundamental nature of Noether’s theorem does not produce
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a symmetric energy-momentum tensor, perhaps because the canonical tensor does not capture all the
required symmetries. However, the approach by Besel-Hagen includes mixtures of different variations
like gauge invariance where the variation approach for Noether’s theorem is restricted - as we will see.

In order to show the Besel-Hagen approach using gauge invariance, it is necessary to work through the
standard textbook approach and realize its shortcomings, thusly, addressing the shortcomings and where
the Besel-Hagen approach succeeds. Additionally, while I include theory for the purpose derivation, this
is more of a set of derivations following the approach from Helmut Haberzettl in his paper, Using Gauge
Invariance to Symmetrize the Energy-Momentum Tensor of Electrodynamics [1].

2. Variational Approach

First, we begin with the textbook approach, the variational approach [4], where the action S is given by
the integral of the Lagrangian density L over four-dimensional space:

S =

∫
Ld4x. (5)

We use the Lagrangian of a free electromagnetic field, which is a function of the four potential:

L = L(xµ, Aν , ∂µAν). (6)

As with the usual variational procedures, we also consider fixed endpoints with small variations δAµ

and δxµ:

x′µ = xµ + δxµ , (7)

A′µ(x) = Aµ(x) + δAµ(x). (8)

By the principle of least action, the variation with fixed endpoints of the action is zero, δS = 0, which
we derive from:

S =

∫
L(xµ, Aν , ∂µAν) d4x, (9)

such that,

δS =

∫
δL(xµ, Aν , ∂µAν) d4x

=

∫ (
∂L
∂Aν

δAν +
∂L

∂(∂µAν)
δ(∂µAν) + ∂µLδxµ

)
d4x

=

∫ (
∂L
∂Aν

δAν +
∂L

∂(∂µAν)
∂µ(δAν) + ∂µLδxµ

)
d4x

=

∫ (
∂L
∂Aν

δAν + ∂µ(
∂L

∂(∂µAν)
δAν)− ∂µ(

∂L
∂(∂µAν)

)δAν + ∂µ(Lδxµ)− ∂µ(δxµ)L)
)
d4x.

(10)

In the last part, we take advantage of the variation of a constant from

∂µ∂xµ = δ(
∂xµ

∂xµ
) = δ(1) = 0. (11)

Thus continuing the derivation of EQ 10:

δS =

∫ (
∂L
∂Aν

− ∂µ(
∂L

∂(∂µAν)
)

)
δAνd4x+

∫
∂µ

(
Lδxµ +

∂L
∂(∂µAν)

δAν

)
d4x

=

∫ (
∂L
∂Aν

− ∂µ(
∂L

∂(∂µAν)
)

)
δAνd4x+

∫ (
Lδxµ +

∂L
∂(∂µAν)

δAν

)
dσµ = 0.

(12)

The integral in the second quantity becomes an integral over hyper surface through the following
relation:
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∂µd4x = dσµ. (13)

From the Euler-Lagrange equations, the first integral becomes zero as:

∂L
∂Aν

− ∂µ

(
∂L

∂(∂µAν)

)
= 0. (14)

Therefore, the second surface integral must also vanish:∫ (
Lδxµ +

∂L
∂(∂µAν)

δAν

)
dσµ = 0. (15)

The result from EQ 15 is the basis of Noether’s theorem. First, we consider the variation in four-
potential from EQ 8:

δAµ(x) = A′µ(x)−Aµ(x)

= A′µ(x)−Aµ(x) +A′µ(x′)−A′µ(x′)

= [A′µ(x)−A′µ(x′)] + [A′µ(x′)−Aµ(x)].

(16)

Following, we will take advantage of contravariant vector rules [5] such that:

A′α(x′) =
∂x′α

∂xβ
Aβ(x). (17)

So, looking at the second bracket in EQ 16, and since the primed potential is a function of x′, then:

A′µ(x′)−Aµ(x) =
∂x′µ

∂xσ
Aσ(x)−Aµ(x). (18)

We can further reduce from this term, as again using contravariant vector rules, and that the spacetime
variable x is really xµ, the partial component in EQ 18 becomes:

∂

∂xσ
(x′µ) =

∂

∂xσ
(xµ + δxµ)

=
∂xµ

∂xσ
+ ∂σ(δx

µ)

= δµσ + ∂σ(δx
µ).

(19)

Accordingly, δxµ is an infinitesimal variation in the space coordinate xµ [6]. In taking its derivative,
if the transformation is a translation, then the derivative will vanish, but if the Lorentz transformation
is a rotation or boost, the derivative does not vanish. Here, the Haberzettl skips many steps, using
definitional arguments. However, this is my take on how this formulation was derived, using the definition
for rotations or boosts about an arbitrary axis, where the Lorentz transformation is defined as:

x′µ = xµ + δxµ

= δµν x
ν + ωµ

ν
xν ,

(20)

Hence,

∂

∂xσ
(x′µ) = δµν δ

ν
σ + ∂σ(ω

µ

ν
xν )

= δµσ + ∂σ(ω
µ

ν
xν ).

(21)

We define the tensor ωµ

ν
as an antisymmetric tensor that contains rotation and boost parameters [7].

Therefore, I relate Haberzettl’s transformation to the infinitesimal Lorentz transformation (from EQ 19
and EQ 21) as:

∂σ(δx
µ) = ∂σ(ω

µ

ν
xν ). (22)

Thus, reworking the tensor [7], we can show that:
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∂σ(ω
µ

ν
xν ) = ∂σ(g

µαωανx
ν)

= ∂σ(g
µαδβνωαβx

ν)

= ∂σ

(
1

2
ωαβ(g

µαδβν − gµβδαν )x
ν

)
= ∂σ

(
1

2
ωαβ(J

αβ)µ
ν
xν

)
,

(23)

where (Jαβ)µ
ν
is a generator for boosts and rotations [8]. Now we can go back to EQ 22 and

represent it as:

∂σ(δx
µ) = δµσ + ∂σ

(
1

2
ωαβ(J

αβ)µ
ν
xν

)
. (24)

Continuing the derivation, plug in the result from EQ 24 into EQ 18, which gives,

A′µ(x′)−Aµ(x) = [δµσ + ∂σ

(
1

2
ωαβ(J

αβ)µ
ν
xν

)
]Aσ(x)−Aµ(x)

= δµσA
σ(x) +

1

2
∂σ

(
ωαβ(J

αβ)µ
ν
xν

)
Aσ(x)−Aµ(x)

= Aµ(x)−Aµ(x) +
1

2
∂σ

(
ωαβ(J

αβ)µ
ν
xν

)
Aσ(x)

=
1

2
∂σ

(
ωαβ(J

αβ)µ
ν
xν

)
Aσ(x).

(25)

The derivative of ωαβ vanishes so we can take it out of the derivative quantity from product rule, but
the generator (Jαβ)µ

ν
does not vanish, so we can continue the derivation as by taking its derivative:

A′µ(x′)−Aµ(x) =
1

2
ωαβ∂σ

(
(Jαβ)µ

ν
xν

)
Aσ(x)

=
1

2
ωαβ∂σ

(
gµαδβν x

ν − gµβδαν x
ν
)
Aσ(x)

=
1

2
ωαβ

(
gµαδβν δ

ν
σ − gµβδαν δ

ν
σ

)
Aσ(x)

=
1

2
ωαβ

(
gµαδβσ − gµβδασ

)
Aσ(x)

=
1

2
ωαβ

(
2gµαδβσ

)
Aσ(x)

=
(
gµαδβσωαβ

)
Aσ(x)

= (gµαωασ)A
σ(x)

= (ωµ

σ
)Aσ(x)

= δ1A
σ(x).

(26)

Haberzettl denotes δ1 as containing rotational variations, which agrees with my derivation. Now, EQ
16 can be rewritten as:

δAµ(x) = [A′µ(x)−A′µ(x′)] + δ1A
µ(x) (27)

where the index in the last term is swapped from σ to µ. We continue by only considering spacetime
variations, such that the second term in the brackets - the potential as a function of x′- can be expanded
by a first order Taylor expansion as:

A′µ(x′ν) = A′µ(xν + δxν)

= A′µ(xν) + δxν(∂νA
µ(x))

= A′µ(x) + δxν(∂νA
µ(x)).

(28)

Therefore, the the whole bracketed quantity from EQ 27 becomes,

A′µ(x)−A′µ(x′) = A′µ(x)− [A′µ(x) + δxν(∂νA
µ(x))]

= −δxν(∂νA
µ(x)).

(29)
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Thus, we can further simply EQ 27 as:

δAµ(x) = −δxν(∂νA
µ(x)) + δ1A

µ(x). (30)

But for the current approach, as per the Haberzettl, we ignored and will ignore rotational contribu-
tions, such that EQ 30 is left as,

δAµ(x) = −δxν(∂νA
µ(x)). (31)

Finally, we can plug in the result from EQ 31, changing µ to ν and ν into σ - I believe that the author
uses a method of the following form - into the integral from EQ 15:∫

[Lδxµ +
∂L

∂(∂µAν)
δAν ]dσµ =

∫
[Lδxµ − ∂L

∂(∂µAν)
(∂σA

ν)δxσ]dσµ

=

∫
[

∂L
∂(∂µAν)

(∂σA
ν)δxσ − Lδxµ]dσµ

=

∫
[

∂L
∂(∂µAν)

(∂σA
ν)gσλδxλ − Lgµλδxµ]dσ

µ

=

∫
[

∂L
∂(∂µAν)

gσλ(∂σA
ν)− gµλL]δxλdσ

µ

=

∫
[

∂L
∂(gµσ∂σAν)

(∂λAν)− gµλL]δxλdσ
µ

=

∫
[gµσ ∂L

∂(∂σAν)
(∂λAν)− gµλL]δxλdσ

µ = 0.

(32)

The result of this derivation is the quantity in the integral, which is called the canonical energy-
momentum tensor:

Tµλ = gµσ ∂L
∂(∂σAν)

(∂λAν)− gµλL

= − 1

µ0
gµσFσν(∂

λAν)− gµλL

= − 1

µ0
Fµ

ν
∂λAν − gµλL.

(33)

But this is ultimately only valid for translational degrees of freedom since we dropped the rotational
terms in the derivation, and it is not symmetric.

3. Effect of Neglected Rotational Contributions

Since we omitted the rotational term δ1A
µ(xµ), we cannot derive any properties about rotation. To

verify this, lets go back to EQ 32 and add the omitted term back into the equation, using EQ 30 instead
of 31 for the variation in potential:∫

[Lδxµ +
∂L

∂(∂µAν)
δAν ]dσµ =

∫
[Lδxµ − ∂L

∂(∂µAν)
δxσ(∂σA

ν) +
∂L

∂(∂µAν)
δ1A

ν ]dσµ

=

∫
[

∂L
∂(∂µAν)

δ1A
ν +

(
Lδxµ − ∂L

∂(∂µAν)
δxσ(∂σA

ν)

)
]dσµ

=

∫
[

∂L
∂(∂µAν)

δ1A
ν + Tµλδxλ]dσ

µ = 0.

(34)

Haberzettl defines the first term as the spin-angular momentum tensor. While he names it by defi-
nition, here is my take on the derivation using the results from EQ 25 and EQ 26:
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∂L
∂(∂µAν)

δ1A
ν = − 1

µ0
Fµνδ1A

ν

= − 1

µ0
Fµν [

1

2
ωαβ∂ν

(
(Jαβ)µ

σ
xσ

)
]Aν

= − 1

2µ0
Fµνωαβ [∂ν

(
(Jαβ)µ

σ
xσ

)
]Aν

= − 1

2µ0
Fµνωαβ [∂σ

(
gµαδβσx

σ − gµβδασx
σ
)
]Aν

= − 1

2µ0
Fµνωαβ(g

µαδβσδ
σ
ν − gµβδασ δ

σ
ν )A

ν

= − 1

2µ0
Fµνωαβ(g

µαδβν − gµβδαν )A
ν

= − 1

2µ0
ωαβ(g

µαFµνδβνA
ν − gµβFµνδανA

ν)

= − 1

2µ0
ωαβ(gµαF

µνAβ − gµβF
µνAα)

= − 1

2µ0
ωαβ(F

ν
αA

β − F ν
βA

α)

(35)

My derivation thus gets the form of the spin angular momentum tensor as:

Sν
α
β = − 1

µ0
(F ν

αA
β − F ν

βA
α). (36)

While this results in an extra 1/2 term on ωαω, it shows up later and get eliminated so I will keep it.
Additionally, my form of the spin angular momentum can be transformed into Haberzettl’s version by
renaming α to ν and vice-versa, and raising quantities using the metric tensor:

Sµαβ = gµνSα
ν
β

= − 1

µ0
(gµνFα

ν A
β − gµνF β

ν A
α)

= − 1

µ0
(FµαAβ − FµβAα).

(37)

Hence, going back to EQ 34, we get,∫
(
1

2
Sµαβωαβ − Tµλδxλ)dσ

µ = 0 (38)

Continuing with the procedure, taking advantage of the fact that ∂µF
µβ = 0 and Fµα = gβαF

µβ ,
we take the divergence of EQ 37:

∂µS
µαβ = − 1

µ0
(Fµα∂µA

β − Fµβ∂µA
α)

= − 1

µ0
(gβαF

µβ∂µA
β − Fµβ∂µA

α)

=
1

µ0
Fµβ(∂µgβαA

β − ∂µA
α)

=
1

µ0
Fµβ(∂µAα − ∂µA

α) ̸= 0.

(39)

Consistent with the results from Bliokh et. all [9], but does go to zero because the partial derivative
is of different components, the contravariant and covariant versions of the four potential. Further:

∫
∂µ[

(
1

2
Sµαβωαβ − Tµλ(

1

2
ωαβ(J

αβ)µ
λ
xλ)

)
dσµ] =

∫
1

2
ωαβ∂µ[S

µαβ − Tµλ

(
(Jαβ)µ

λ
xλ

)
]d4x = 0.

(40)
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Since EQ 39 does not go to zero, and we derived it using the infinitesimal rotation term, this term
would have to contribute to the Noether current for rotations, i.e., the flow carrying the charge. Therefore,
considering the quantity in the integral in EQ 40, it must be zero:

∂µ[S
µαβ − Tµλ

(
(Jαβ)µ

λ
xλ

)
] = 0. (41)

Where we get a conservation law by adding rotational variation. This law must be satisfied, hence
without adding the rotational variation term, we would only get the second term in the quantity, which
would violate the law we just derived.

4. Belinfante Symmetrization

We proceed to the Belinfante procedure, a method for producing a symmetric energy-momentum tensor.
The first step is to construct a tensor of three spin-angular momentum tensors, per the literature [9],

Kµσλ = −1

2
(Sµσλ + Sνσλ − Sσµλ). (42)

Second, we produce a new tensor by adding the divergence of tensor K to the canonical energy
momentum tensor:

T ′µλ = Tµλ + ∂σK
µσλ. (43)

Then, in taking the divergence of the new tensor of the newly constructed tensor T ′µλ,

∂µT
′µλ = ∂µT

µλ + ∂µ∂σK
µσλ

= ∂µT
µλ.

(44)

where the second partial derivative vanishes as K is antisymmetric, and the double contraction always
vanishes - consistent with textbook results [9]. Thus, using results from EQ 37 and 38, we can evaluate
tensor K as:

Kµσλ = −1

2
(Sµσλ + Sλσµ − Sσµλ)

= −1

2
[− 1

µ0
(FµσAλ − FµλAσ)− 1

µ0
(FλσAµ − FλµAσ) +

1

µ0
(FσµAλ − FσλAµ)]

=
1

2µ0
[(Fµσ − Fσµ)Aλ + (Fλσ + Fσλ)Aµ + (Fµλ − Fλµ)Aσ]

=
1

2µ0
(2FµσAλ)

=
1

µ0
FµσAλ,

(45)

taking advantage of the field tensor,

Fµσ = −Fσµ, (46)

and thus:

∂σK
µσλ =

1

µ0
∂σF

µσAλ +
1

µ0
Fµσ∂σA

λ

=
1

µ0
Fµσ∂σA

λ.

(47)

Adding the result from EQ 47 to EQ 43 and recalling canonical energy-momentum tensor in EQ 33,
we can write:
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T ′µλ = Tµλ +
1

µ0
Fµσ∂σA

λ

= − 1

µ0
Fµ

ν
∂λAν − gµλL+

1

µ0
Fµσ∂σA

λ

= − 1

µ0
Fµ

ν
∂λAν − gµλL+

1

µ0
gσνFµ

ν
∂σA

λ

= − 1

µ0
Fµ

ν
∂λAν − gµλL+

1

µ0
Fµ

ν
∂νAλ

=
1

µ0
Fµ

ν
(∂νAλ + ∂λAν)− gµλL

=
1

µ0
Fµ

ν
F νλ − gµλL.

(48)

This new tensor is indeed symmetric. And just following procedure of Noether’s theorem, from EQ
41 and of the same formulation as of EQ 40 but plugging in the new primed tensor, we still get a
conservation law in the form of:

∂µ[S
µαβ − Tµλ

(
(Jαβ)µ

λ
xλ

)
+ ∂σK

µσλ

(
(Jαβ)µ

λ
xλ

)
] = 0. (49)

5. Gauge Invariance

Up to this point, the derivations relied on the first order Taylor series expansion of the spacetime coor-
dinate δxµ. Nevertheless, as Bessel-Hagen highlight, the Noether framework offers a way to incorporate
symmetries beyond just those of spacetime [10]. Notably, we consider gauge invariance in electrodynam-
ics, where the standard four potential under gauge transformation take the form:

A′ν(x) = Aν(x)− ∂νϕ(x). (50)

Here, ϕ is a scalar function. Beginning the procedure, we first recall EQ 8, the transformation for a
small variation, then Haberzettl anticipates that that variation will be split into two terms, a variation
term in the spacetime coordinate and a variation term due to gauge transformation:

δAµ(x) = δxA
µ(x)− δgA

µ(x). (51)

Now we employ the gauge transformation from EQ 50 into EQ 27 from the variational approach:

δAµ(x) = [A′µ(x)−A′µ(x′)] + δ1A
µ(x)

= [Aµ(x)− ∂µϕ(x)−Aµ(x′) + ∂µϕ(x′)] + δ1A
µ(x)

= (Aµ(x)−Aµ(x′)) + (∂µϕ(x′)− ∂µϕ(x)) + δ1A
µ(x)

= (Aµ(x)−Aµ(x′)) + (∂µϕ(x′)− ∂µϕ(x)) + δ1A
µ(x)

= (Aµ(x)−Aµ(x′)) + ∂µ (ϕ(x′)− ϕ(x)) + δ1A
µ(x)

= (Aµ(x)−Aµ(x′)) + ∂µδϕ+ δ1A
µ(x).

(52)

Here, Haberzettl denotes

δϕ(x) = ϕ(x′)− ϕ(x). (53)

And again, for the term in the bracket, by a first order Taylor expansion, we get:

Aµ(x)−Aµ(x′) = Aµ(x)−Aµ(x+ δx)

= Aµ(x)−Aµ(x)− δxν(∂νAµ)

= −δxν(∂νA
µ),

(54)

similar to the result from the initial approach. Therefore EQ 52 becomes:

δAµ(x) = −δxν(∂νA
µ) + ∂µδϕ(x) + δ1A

µ(x), (55)

giving the following equivalence:
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δAµ(x) = δxA
µ(x)− δgA

µ(x)

= −δxν(∂νA
µ(x)) + ∂µδϕ+ δ1A

µ(x).
(56)

Thus, the spacetime variation is the exact result from the original approach in section 2:

δxA
µ(x) = −δxν(∂νA

µ), (57)

and the remaining term accounts for gauge invariance as:

δgA
µ(x) = ∂µδϕ+ δ1A

µ(x). (58)

Further, the variation infinitesimal of the scalar,

δϕ = ϕ(x′)− ϕ(x)

= ϕ(xν − δxν)− ϕ(xν)

= ϕ(xν) + δxν(∂νϕ)− ϕ(xν)

= δxν(∂νϕ)

= δxν(Aν(x)−A′
ν(x)).

(59)

But, according to Haberzettl, we only use the scalar form linear in the field, which eliminates the
primed potential and leaves,

δϕ = δxνAν(x). (60)

Plugging the result from EQ 60 into the gauge invariance variation, EQ 58, then:

δgA
µ(x) = ∂µ (δxνAν(x)) + δ1A

µ(x)

= δxν∂µAν(x) +Aν(x)∂
µδxν + δ1A

µ(x).
(61)

Again, taking advantage of EQ 22 and using the exact same procedure just with different indexes as
in EQ 24 and EQ 26, my take on the second term from EQ 61 goes as the following:

Aν∂
µδxν = Aν

1

2
ωαβ∂

µ
(
(Jαβ)λ

σ
xσ

)
= Aν

1

2
ωαβg

µν∂ν

(
(Jαβ)λ

σ
xσ

)
=

1

2
ωαβ∂ν

(
gλαδβσx

σ − gλβδασx
σ
)
Aµ

=
1

2
ωαβ

(
gλαδβσδ

σ
ν − gλβδασ δ

σ
ν

)
Aµ

=
1

2
ωαβ

(
gλαδβν − gλβδαν

)
Aµ

=
1

2
ωαβ

(
2gλαδβν

)
Aµ

= (gλαδβνωαβ)A
µ

= (gλαωαν)A
µ

= (ωλ

ν
)Aµ

= δ2A
µ(x).

(62)

Where again, Haberzettl denotes δ2 as rotational contributions of the same form as δ1, which agrees
with my derivation. Thus, EQ 61 turns into:

δgA
µ(x) = δxν∂µAν(x) + δ2A

µ(x) + δ1A
µ(x). (63)

Only considering the second two rotational terms:

δ1A
µ(x) + δ2A

µ(x) = (ων

ν
)Aµ + (ωλ

ν
)Aµ

=
1

2
ωαβ∂σ

(
(Jαβ)µ

ν
xν

)
Aσ +

1

2
ωαβ∂

µ
(
(Jαβ)λ

σ
xσ

)
Aν

=
1

2
ωαβ [A

σ∂σ

(
(Jαβ)µ

ν
xν

)
+Aν∂

µ
(
(Jαβ)λ

σ
xσ

)
] = 0

(64)
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Again, I refer to another arguement from Haberzettl, that the rotational terms will cancel out.
Perhaps, this is because J is an antisymmetric tensor, where taking different partial derivatives of the
same antisymmetric tensor cancels out. Therefore, we are left with:

δgA
µ(x) = δxν∂µAν(x). (65)

Thus going back to EQ 56, we are left with:

δAµ(x) = δxA
µ(x)− δgA

µ(x)

= −δxν(∂νA
µ) + δxν∂µAν(x)

= −(∂νA
µ − ∂µAν)δx

ν

= −Fµ

ν
δxν

(66)

Employing this variation back into EQ 15, but switching the µ with ν and replacing ν with σ,∫
[Lδxµ +

∂L
∂(∂µAν)

δAν ]dσµ =

∫
[Lδxµ − ∂L

∂(∂µAν)
F ν
σ δx

σ]dσµ

=

∫
[

∂L
∂(∂µAν)

F ν
σ δx

σ − Lδxµ]dσµ

=

∫
[

∂L
∂(∂µAν)

F ν
σ g

σλδxλ − gµλδxλL]dσµ

=

∫
[

∂L
∂(∂µAν)

gσλF ν
σ − gµλL]δxλdσ

µ

=

∫
[

∂L
∂(∂µAν)

F νλ − gµλL]δxλdσ
µ

=

∫
[

∂L
∂(gµσ∂σAν)

F νλ − gµλL]δxλdσ
µ

=

∫
[gµσ ∂L

∂(∂σAν)
F νλ − gµλL]δxλdσ

µ = 0,

(67)

where the result inside of the tensor gives the following tensor:

Tµλ = gµσ ∂L
∂(∂σAν)

F νλ − gµλL

= − 1

µ0
gµσFσνF

νλ − gµλL

= − 1

µ0
Fµ
ν F

νλ − gµλL

= − 1

µ0
gνσF

σµF νλ − gµλL

=
1

µ0
gνσF

σµFλν − gµλL.

(68)

Hence, the new version of Tµλ is ultimately, a symmetric tensor, derived via the variational approach,
but taking additional steps of accounting for gauge invariant quantities.

6. Conclusion

The presentation in this paper, followed Haberzettl’s exploration of Noether’s theorem for a the La-
grangian for a free electromagnetic field. By employing the variational approach, we derived the canon-
ical energy-momentum tensor, where its anti-symmetry poses challenges by not including rotational
contributions.

To address this, we explored the Belinfante procedure, a textbook procedure use to symmetrize the
energy-momentum tensor by introducing a combination of spin angular momentum tensors. However,
Bessel-Hagen’s approach is much more intuitive, where symmetry of the energy-momentum tensor is just
a manifest property of the variational approach and addresses limitations like rotational contributions.

Ultimately, this is a set of derivations based off of the work from Haberzettl, hence, for a more theory
grounded approach, refer to his original paper [1].
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A. Appendix: Relevant Equations

Throughout the derivations, I take advantage of many of the following properties of tensors, metric
tensors, and contravariant and covariant vector rules, so as to not clutter the paper, these are taken from
various sources mentioned in the references and relevant sections.

The metric tensor, as a symmetric tensor, satisfies:

gαβ = gβα.

Thus, in contravariant and in mixed form:

gαβ = gβα = gαβ .

Following, any two metric tensors produce the following:

gαγg
γβ = δβα = δαβ = δαβ .

A scalar in contravariant or covariant form can be transformed into the other by metric multiplication:

xα = gαβx
α

xα = gαβxα

We denote differential with respect to covariant or contravariant vectors as:

∂α =
∂

∂xα
,

∂α =
∂

∂xα
.

Hence, differentiation with respect to covariant or contravariant vector transform like:

∂

∂xα
= gαβ

∂

∂xα
,

∂α = gαβ∂α.

On the topic of derivation, the derivative of the spacetime variable with respect to another:

∂

∂xα
xβ = δβα

Similarly, we can transform tensors with the metric tensor as:

Aµν = gµλgνσAλσ,

Aµν = gµλgνσA
λσ,

Aµν = gµλAνλ,

Aµν = gµλA
λ
ν ,

Aλ
ν = gλµAµν .
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